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INTRODUCTION 

Let V" be a nonsingular A-hermitian space of dimension n over a field K 

and U(V) the unitary group on V. Under the assumption that K is a finite field 

of characteristic different from 2 and V is isotropic, Ishibashi showed in [12] that 

U(V) is generated by three elements. Further, in fact, he proved that when the 

unitary group U(V) is the symplectic group Sp(V), then U(V) is generated by 

just two elements. 

This result was first refined by the works of Earnest, Ishibashi, and others in 

[2] and [7]. There the case where U(V) is the orthogonal group 0(V) was studied. 

The restrictions of isotropy and characteristic were removed, thus, showing that 

when U(V) = 0(V), U(V) is generated by two elements. 

The purpose of this paper is to again refine Ishibashi's original result. The 

paper's main theorem will show that all unitary groups over finite fields of odd 

characteristic are generated by only two elements. The bulk of the work, here, is in 

removing the restriction of isotropy when V is a A-hermitian space which is not a 

quadratic space and in showing that when U(V) ^ 0(V) and U(V) ^ Sp(V), U(V) 

is generated by two elements. The proof of this main result occurs in Chapter 4. 

Prior to that, however, Chapter 1 will establish some key ideas about the 

underlying finite field. It defines the concept of an involution on a field, establishes 

the surjectivity of the norm and trace maps, and defines some naturally occurring 

subsets of the field. 

Next, Chapter 2 will detail what a A—hermitian space is and define the 

special cases of A—hermitian spaces.   Chapter 2 also discusses classification of 
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these spaces and the property of isotropy. Chapter 2 is where one sees the ability 

to remove the restriction of isotropy from nonquadratic A—hermitian spaces. 

Finally, Chapter 3 develops the idea of the unitary groups over A—hermitian 

spaces. The generating maps used in the main theorem will be defined along with 

some essential identities for combining them. 



CHAPTER 1 

THE UNDERLYING FIELD 

Throughout this chapter, all fields under consideration will be assumed to 

be finite. Moreover, for the entirety of this paper, all fields will be assumed to have 

odd characteristic. The theory which will be developed herein is fundamentally 

different for finite fields of characteristic two and therefore will not be treated at 

this time. 

Consequently, the underlying field K considered here has order q=pm for 

some odd prime p and natural number m. The multiplicative group K = K\{Qi] 

is well known to be a cyclic group. Here and throughout the remainder of this 

paper, a will denote a fixed generator of this group; that is, K = (a). 

1. Some Important Maps of the Underlying Finite Field. 

Let F be a subfield of K. Then K is known to be a finite Galois extension 

of F. Let AutpK = {o\,..., an} be the Galois group of K over F. In fact, AutpK 

is a cyclic group generated by the Fröbenius automorphism a defined by a(a) = a* 

for a€K, where £ = \F\. 

The first two maps to be defined and discussed are the norm and trace 

maps of the extension K/F. It will be shown that these maps are surjective in the 

present context. 

1.1.1 Definition.  The norm map of K/F is deßned as N[K/F](k) = 

<Ti(k)a2(k)... an(k) for k G K. 



1.1.2 Definition. The trace map of K/F is defined as T[K/F](k) = ai(k) + 

a2{k) + • • • + Vn(k) for keK. 

Most of the time, the norm and trace of an element keK will be denoted 

N(k) and T(k) since the fields over which they are defined will be obvious to 

discern. 

1.1.3 Lemma.  The norm N[K\F] is surjective. 

Proof. Now, N[K/F](a) = N{a) = aotof . ..c/""0 = a**-1/'-1. But this im- 

plies that (N(a))e~1 = oP~l = 1. What is more is that this is the smallest 

such power. For if there were a smaller power s for which (N(a))s = 1, then 

(a^Y = a^ = ^n-i/t where H - 1 = st, t e N and a*"-1/* = l. This, 

of course, cannot happen since K is generated by a and has order £n — 1. Hence, 

N(a) has order £—1. 

Note, however, that N(K) = (N(a)) since K = (a). Thus, \N(K)\ =£-1. 

Also, \F\=£- 1. Hence, |N(if)| = \F\. Therefore, N[K/F] is surjective.    D 

1.1.4 Lemma.  The trace T[K/F) is surjective. 

Proof. It suffices to show that lp has a pre-image in K, since ljp generates 

F additively. Now, by Dedekind's theorem on the independence of characters, 

{CTI, cr2,..., <rn} is linearly dependent over K. Thus, there exists 6 G K such that 

o-i(<5) + 0"2(<5) + ••• + <rn(<5) does not equal zero. But this is T[K/F](6) = T(<5). 

Hence, T (^5] = TT6JT{0) — IF- Therefore, the trace is surjective.    D 

These two surjections will prove to be invaluable in establishing important 

facts about hermitian spaces and their unitary groups in the next two chapters. 

Finally, the concept of an involution of the finite field K must be set forth. 



1.1.5 Definition. An involution of the unite held K is an antiautomorphism * 

of K of order < 2. 

Thus, (a + b)* = a* + b*, (ab)* = b*a*,l* = 1 and (a*)* = a for a,b e X. 

One observes immediately that the concept of an antiautomorphism of K is mute 

since K is a field and has commutative multiplication. Hence, (ab)* = b*a* = a*b*. 

Also, the identity map over K is trivially an involution. However, it will be 

involutions which are different from the identity map which will be of primary 

interest. Further if it is assumed that the involution * fixes F in this case, then 

this map sending a to a* for a € K is an element of order two in the Galois group 

AutpK. Thus, the fixed field of * is a subfield of index two in K. This idea will 

be revisited later. 

2. Special Subsets of the Underlying Finite Field. 

Let K be an arbitrary finite field of odd characteristic^ Let a e K be a 

fixed generator of the mulltiplicative cyclic group K. First, consider the subset 

of elements in K consisting of the squares of nonzero elements of K. This set is 

denoted K2. 

1.2.1 Definition. K2 = {k  eK \k = b2 for some beK}. 

It is well known that K2 has exactly h\K\ elements [17]. With this in mind, 

one can see that these elements are precisely the even powers of a. 

1.2.2 Lemma. K2 = {a2k \ k = 1,2,..., \\K \ }. 

Proof. Let S = {a2k \ k = 1,2,'..., \\K\}. Clearly, S C K2, since for any k, a2k = 

(oLk)2. One also notes from its definition that l^l = \\K\. Thus, S is a subset of 

K2 which contains the same number of elements as K2. Hence, K2 = S..  • 



Likewise, K\K2 is comprised of the odd powers of the generator a. 

This leads to the consideration of two sets of differences which appear nat- 

urally in the development of the main theorem in Chapter 4. They are the two 

sets containing the differences of even and odd powers of a respectively. 

1.2.3 Definition. 

EK — {x — V I x = arand y = as,r,s even integers} 

= {x-y | x,y ek2}. 

1.2.4 Definition. 

OK = {x — y | x — ar, y = as, r, s odd integers) 

= {x-y\x,yek\K2}. 

8K is a set which is particularly interesting, not only because of the natural 

way in which it arises, but because this set often encompasses all of K. Clearly 

0 G £K, since x - x = 0 Wx G K2. The following lemma also shows that most of 

the elements of K are members of SK as well. 

1.2.5 Lemma. Let 6 G K such that 6 =^ ±1. Then 6 G Ex- 

Proof . Let x — ^sy = ^Y~- Both x and y are elements of K since 6 ^ ±1 and 

K is not of characteristic two. Further, x2 - y2 = (^-)   - (^i)   = \[(Ö2 + 26 + 

l)-(<52-2<5 + l)] = i[4<5] = <5.   D 

So, EK contains all of K with the possible exception of the elements ±1. 

In fact, one observes readily that \{ K = {—1,0,1}, then EK — OK = {0}. Thus, 

any finite field with only three elements will present a problem when working with 

EK- However, when \K\ > 3, one sees that {±1} C £K or {±1} C OK-    , 



1.2.6 Lemma. Let \K\ > 3. Then {±1} C SK or {±1} C Ox- 

Proof . Let \K\ > 5. It suffices to show the result for Fp = Z/pZ, the field of p 

elements, since any other field F of characteristic p contains a copy of Fp. Namely, 

it contains {mlp \ rn G Z}. So, no harm results in identifying Fp with this subfield 

of F. 

Hence, {1,2,3,4} C if since |ÜT| > 5. One observes, also, that 1,4 € if2 

regardless of p since 1 = l2 and 4 = 22. Now, if 2 € K2, then {±1} C £K since 

2 - 1 = 1 and 1 - 2 = -1. If 2 G K\K2 and 3 € #2, then {±1} C £K since 

4-3 = 1 and 3-4 = -1. Finally, if 2,3, € Ä^2, then {±1} C 0K since 3-2 = 1 

and 2-3 =-1.    D 

From the previous discussion and Lemmas 1.2.5 and 1.2.6, one sees that 

either SK = K or EK = K\{±1} and {±1} C OK. 

Finally, another set which occurs naturally when developing the theory of 

unitary groups is a set denoted by C in the literature. This section will conclude 

with the set's definition and the determination of its relationship to the fixed field 

of the involution *. First, consider the fixed field KQ of the involution * on the 

finite field K. 

1.2.7 Definition. K0 = {k € K | k* = k}. 

KQ is indeed a subfield of K since (a — b)* = a* — b* = a — b and {ab-1)* — 

o*(6*)_1 = ab-1 for all a,b £ Ko- Let ß be a fixed generator of the multiplicative 

cyclic group Ko. Note also that ß / 1 since charK ^ 2. As a matter of notation, 

the subset of any given set which is fixed by the involution * will be denoted by the 

subscript zero. Further, as alluded to earlier, when one views K as an extension 

of the finite field KQ, then [K : KQ] = 2. It is also important to note here that if 



the involution * is different from the identity then * must be the unique Pröbenius 

automorphism, a, which sends element a of K to ae, where \KQ\ = L 

Moreover, in this context, KQ C K2. 

Lemma 1.2.8. Let K be a unite field with * # 1. Then K0 C K2. 

Proof. Let 8 G KQ. By definition, 8* = 8. But 6* = <5£ where |Ä"o| = I since * ^ 1. 

Thus, 8e = 8 implying ö^""1 = 1. Now, 8 = as for some natural number s since 

6 G if and K = (a). Hence, as^~^ = 1. This implies that £2 - 1 divides s(£ - 1) 

since o(a) = £2 — 1. Therefore, (•£ + l)|s. However, ^ + 1 is even since £ is odd. So 

s must be even. Whence, by Lemma 1.2.2, 8 G K2 and Äo ^ K2.    D 

Next, let A be an element of K such that AA* = 1. It is this element which 

will give shape to the structure of the A—hermitian space over K which will be 

discussed in the next chapter. The set C consists of the elements x G K such that 

x = — Xx*. Equivalently; 

1.2.9 Definition. C = {x € K \ x + Xx* = 0}. 

1.2.10 Lemma. If C ^ {0}, then C = cK0 for anyO^ceC. 

Proof. Let 0 ^ c € C. Take any b in C. Since one has c+ Ac* =0 and b + Xb* = 0, 

it follows that be'1 = -Ab^-Ac*)-1 = AA"1^*)-1 = b*^'1)* = (be-1)*. This 

means that fee-1 € KQ, and so C C CKQ. 

Let ck G CKQ. ck + X(ck)* = ck + Xc*k* = ck + Xc*k, since k G KQ. Thus, 

ck + X(ck)* = k(c + Ac*) = kO = 0. Hence, cA; G C and C C oR"0. Therefore, 

C = cK0.    D 

Thus, one has cK0 = {cßl \ i - 1,2,... ,£-l}U{0}. Lemma 1.2.10 coupled 

with what has been shown about the set SK will be instrumental in showing the 

generation of the unitary group over a two dimensional hermitian space. 



CHAPTER 2 

A-HERMITIAN SPACES AND THEIR PROPERTIES 

This chapter addresses some of the essential properties of A—hermitian 

spaces used in the study of unitary groups in Chapter 3 and in the discussion of 

the main theorem in Chapter 4. The chapter consists of three subsections. The 

first subsection defines a A—hermitian space and details some important struc- 

tural elements common to all A—hermitian spaces. Next, the second subsection 

sets forth the notion of isotropic spaces and discusses some pertinent results for 

A—hermitian spaces. Finally, the third subsection formalizes what is meant by 

isometric A—hermitian spaces. The three special types of A—hermitian spaces giv- 

ing rise to unitary groups are defined. Discussion regarding classification of these 

special spaces up to isometry is also provided in this subsection. 

1. A—Hermitian Spaces. 

Let V be an n-dimensional left vector space over a field K with involution 

* as described in Chapter 1. Any further mention of the term vector space refers 

to this description. Note that the underlying field need not be finite to achieve 

the results of this subsection. 

2.1.1 Definition. A sespuilinear form on V is a mapping f : V x V —»• K such 

that 

i) f(xi+x2,y) = f(x1,y) + f(x2,y) V x1,x2,ye V, 

Ü) f{x,yi+y2)=f(x,yi) + f(x,y2)Vx,y1,y2GV, 

Hi) f(ax, y) = af(x, y) V a e K,x,y eV, and 

iv) f(x,by) = f(x,y)b* VbeK,x,y£V. 



2.1.2 Definition. Let X be a fixed element of K with XX* = 1. A sesquilinear 

form f onV satisfying f(x, y)* — Xf(y, x) V x, y € V is called a X—hermitian form 

onV. In this case, (V, f) is called a X—hermitian space. 

2.1.3 Definition.  Two vectors x, y in a X—hermitian space (V, f) are orthogonal 

if f(x,y) — 0. Let (£/,/) be a subspace of(V,f). Define the orthogonal 

complement ofU in V to be U1 = {v G V \ f(v,u) = 0 V u 6 U}. 

Notice that the condition of orthogonality is always symmetric since 

f(x,y) = 0 implies f(y,x) = X~lf{x,yy = A^O* = A^O = 0. 

2.1.4 Definition.  The radical of a X—hermitian space (V, f) is rad V = V1- 

= {veV \ f(v,x) = 0VxeV}. 

2.1.5 Definition. A X—hermitian space (V,f) is said to be nonsingular if and 

only if rad V = {0}. 

A A-hermitian space (V, /) is nonsingular if and only if there is no vec- 

tor in V other than 0 which is orthogonal to the whole space. Prom this point 

forward, all A—hermitian spaces are assumed to be nonsingular. Notice that non- 

singularity implies that for any nonzero vector x in V there is a nonzero vector 

y such that f(x,y) = 1. Directly from the definition, nonsingülarity implies that 

there is 0 ^ z G V such that f(x,z) =6^0. Hence, let y = (6~1)*z and 

f(x,y) = f{x,{6^)*z) = f(x,z)6-i = 8S-1 = 1. 

Further, if A ^ —1 or * ^ 1, there is a vector u in V such that /(it, u) ^ 0. 

To see this choose a vector x in V. If f(x, x) ^ 0, then let u = x. Otherwise, choose 

another vector y in V such that f(x,y) = 1. Again, if f{y,y) ^ 0, then let u = y. 

If f(y,y) = 0, then consider r : K —» K defined by T{^) = 7*7_1 for 7 e K. 

The map T is a multiplicative homomorphism, since for 71,72 G K^T^x^) — 
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(7i72)*(7i72)'1 = 727i72"17f1 = (7i71~1)(72*72_1) = r(7i)r(72). If A ^ -1, then 

-A* ^ 1. This implies T(8) = 5*6~1 = 1 / -A* for all S G K0. If * ^ 1, then for 

<5 G K\C, 8 + XÖ* ^ 0. Thus, -A* ^ «S*^1 = T(<5). So if f(y, y) = 0, then there is 

&Ö € K such that 6*6~1 y^ —A*. Let u = x + 6y and /(«, it) = f(x + 8y,x + 8y) = 

f(x,x) + 8*f(x,y) + 8f(y,x) + 66*f(y,y) = 6*+X*6^0. 

2.1.6 Definition. A basis B = {^1,^2, • • • ,vn} for a X—hermitian space (V,f) is 

called an orthogonal basis if f(vi,Vj) = 0 for i ^ j. 

2.1.7 Proposition. Let (V,f) be an n—dimensional X—hermitian space over K 

with X ^ —1 or * / 1. Then V has an orthogonal basis. 

Proof. The proof proceeds by induction on the dimension n of V. The result is 

vacuously true for n = 1. 

Suppose that there is an orthogonal basis for any (n — 1)—dimensional 

A—hermitian space over K with A 7^ —1 or * ^ .1. Let (V, f) be a similarly 

described n—dimensional A-hermitian space over K. Since A^—lor*^l, choose 

a basis S\ = {u\,U2,. •• ,un} of V so that f(ui,Ui) ^ 0. Let yi = Ui — fLi'Z)u'L 

for i = 2,... ,'n and consider W = span{y2,... ,yn}- Note that W is an (n — 

1)—dimensional A—hermitian space over K with /(ui, j/i) = 0 for i = 2,... ,n. By 

the inductive hypothesis, W has an orthogonal basis, say \z<i,..., 2n}. Therefore, 

{iti, Z2. • • • i zn} is an orthogonal basis of V.    D 

2.1.8 Definition. Let (V, /) be a X—hermitian space and let (U, f) and (W, f) be 

subspaces of(V, /). V is the orthogonal sum ofU and W, denoted V — U _L W, if 

i) V = U © W, and 

ii) f(u, w) = 0 V u e U, weW. 

11 



2.1.9 Proposition. Let (V,/) be a A—hermitian space and let (U,f) be a non- 

singular subspace of (V, /). Then V = U _L UL. 

Proof. For the proof, see [17; Theorem 7.1.4].    D 

Also, for any basis B of a A-hermitian space (V, /), one can associate to 

the form / a matrix with respect to B. 

2.1.10 Definition.  The matrix of f with respect to a basis B, denoted MB is 

2.1.11 Proposition. Let B = {ei,C2,' • • ,en} andB' = {e^e^,- • • ,e^} be bases 

of a A—hermitian space (V,/). Let P = (py) be such that e'j = Y^i=\Pijei- Then 

MB> = PtMßP*, where P* denotes the transpose of P and P* = (p?-). 

Proof. 

(P'MBP*)y = £    X>i/(e*,eh)    p^ 

n      n 

= ]C^P^Piy/(efc,ek) 

n n 

fc=i      /i=i 
n / n N 

= Ylpkif I ek,^2Phjeh 
fe=i \     ^=1 
(n n 

y^Pfciefc,y^Pfajefa 
fc=l /l=l 

= /(cJ,c})- 

= (MB,)y    D 

Since (V, /) is nonsingular, there is a basis B of V with detMß ^ 0. Because 

of the change of basis formula in Proposition 2.1.11, one can easily see that for any 
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other basis B' of V the matrix Mß> has a nonzero determinant as well. It follows 

then that a A—hermitian space (V, /) is nonsingular if and only if detMß i1 0 

for every basis B of V. More specifically, if A ^ —1 and * ^ 1, then the matrix 

associated to an orthogonal basis of V has a nonzero determinant implying for 

such a basis B = {ei, e2, • •., en} that /(e*, ei) ^ 0 for i = 1 to n. 

2. Isotropy of A—Hermitian Spaces. 

For the purposes of this subsection also, it is again the case that the un- 

derlying field need not be finite. 

2.2.1 Definition. For a X—hermitian space (V, f), a nonzero vector v EV is said 

to be isotroyic if f(v,v) =0. Otherwise, v is anisotroyic. 

2.2.2 Definition. A A—hermitian space (V, f) is said to beisotroyicifV contains 

an isotropic vector. If V contains no isotropic vectors, then the space (V, f) is 

anisotroyic. 

2.2.3 Definition. A hyyerbolic plane, M., over K is a two dimensional 

X—hermitian space which has a basis {u,v} with f{u,u) = f(v,v) = 0 and 

f(u,v) = 1. The vectors u and v are called a hyyerbolic yair. 

The following discussion shows that for an isotropic vector a; in a 

A—hermitian space (V, /), a vector y can be found such that {x,y} is a hyperbolic 

pair.  First, Lemma 2.2.4 pertains to the specific case when A = —1 and * = 1. 

Such a A—hermitian space is called a symplectic space. 

2.2.4 Lemma. Every nonzero vector in a symplectic space is isotropic. 

Proof. Let (V, f) be a symplectic space. By definition of the space, f(x,x)* = 

f{x,x) = —f(x,x) for every 0 ^ x e V. Hence, 2f(x,x) = 0. Thus, f(x,x) = 0 

since K is not of characteristic two.    D 
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Therefore, every symplectic space is clearly isotropic. Also, since the sym- 

plectic space (V, /) is assumed to be nonsingular, for any vector x in V there is 

a y € V such that f(x,y) = 1. In light of Lemma 2.2.4, {x,y} is a hyperbolic 

pair. Further, this result is expanded to nonsymplectic A—hermitian spaces in the 

following proposition. 

2.2.5 Proposition. Let (V, /) be a X—hermitian space. Ifx is an isotropic vector 

in V, then there exists y E V such that {x, y} is a hyperbolic pair. 

Proof. The previous discussion provides the result for symplectic spaces, so let 

(V, /) be a nonsymplectic A—hermitian space. Since (V, /) is nonsingular, there 

exists a vector z € V so that f(x,z) = 1. If z is isotropic, then taking y — z 

achieves the desired result. So suppose z is anisotropic. Let 7 = —2~1f(z,z) 

and consider the vector y — z + 71. The vector y is equal to 0 if and only if 

1z = —f(z,z)x. But if 2z — —f(z,z)x, then 2 = f(x,2z) = f(x,—f(z,z)x) = 

—f(z, z)* f(x, x) = 0. Thus, y = z + *yx ^ 0 since K has odd characteristic. 

Now, /(y, y) = f(z + 7z, z + 7z) = f(z, z) + Yf{z, x) + 7/O, z) 

+77*/0r, x) = f(z, z) + 7*A* + 7 = f(z, z) - f{z, z) = 0. Also, f(x, y) - f(x, z + 

7x) = f(x,z) +*y*f(x,x) = 1. Therefore,{a:,y} is a hyperbolic pair.    D 

It follows directly from Proposition 2.2.5 that when (V, /) is a nonsymplec- 

tic A—hermitian space and dimV = 2, V is isotropic if and only if V = H. 

3. Classification and the Special A—Hermitian Spaces. 

2.3.1 Definition.  Two X—hermitian spaces (V,/1) and (W, fa) are said to be 

isometric, denoted V = W, if there is an isomorphism tp : V —»• W such that 
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J2{ip{x)i'p{y)) = fi(xiV) f°r every x,y G V. The isomorphism ip is called an 

isometry. 

The isometric relationship = clearly defines an equivalence relation on the 

collection of A—hermitian spaces over K. The question then becomes how to 

classify A—hermitian spaces up to isometry. The answer to this question is not 

completely known for general fields. So at this point, K must again be assumed 

to be finite, in which case the classification is completely known. 

Moreover, attention is now focused on the special A—hermitian spaces 

needed for the study of unitary groups. They are the quadratic, symplectic, and 

hermitian spaces. Recall that a symplectic space was previously defined as a 

—1—hermitian space with * = 1. A quadratic space is a 1—hermitian space with 

* = 1. Finally, the term hermitian space will be used to describe a 1—hermitian 

space over K with * ^ 1. 

Now in the case of quadratic spaces, it is well known that two spaces are 

isometric if and only if their dimensions and discriminants are equal [17]. 

2.3.2 Definition. Let (V, f) be a quadratic space and B a basis of V.    The 

discriminant ofV is dK2 in K/K2 where d = detMg. 

Considering Proposition 2.1.11, this definition makes sense. There one sees 

that for any two bases B and B' of V,detM& = de^MßP*) = (detP)2detMB. 

This is true since detP* = detP and P* = P since * = 1. Thus, the discriminant 

for any two bases differ only by the square of a nonzero element of K. Therefore, 

as an element of K/K2, is independent of the choice of basis. Because of the 

uniqueness of the discriminant dV for a quadratic space (V, f), it has been shown 

that there are only two distinct types of spaces for any given dimension n up to 

isometry. It is the case that V = (1,1,..., 1) (n ones) or V ^ (1,1,..., 1,6) (n — 1 
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ones) where 8 G -K"\Ä'2[11]. Here the notation (aj, • • • ,an) means that there exists 

an orthogonal basis {v\, • • • vn} of V such that f(vi,Vi) = a* for i = 1,... ,n. 

In the case of hermitian spaces over if, one simply needs dimension in order 

to classify spaces. As is shown in the following proposition, this is due to the fact 

that an orthogonal basis, known to exist by Proposition 2.1.7, can be converted 

into an orthonormal basis. 

2.3.3 Proposition. Let (V, f) be an n dimensional hermitian space over K. Then 

V has an orthonormal basis. 

Proof. Let {vi, v2, • • • , vn} be an orthogonal basis of V. f(x, x)* — f(x, x) V x G V 

since V is hermitian. So, for i = 1, • • • ,n, f(vi,Vi) = a^ € KQ. By the surjectiv- 

ity of the norm map shown in Lemma 1.1.3, there exists an oti € K such that 

N{oLi) = di. Hence, {v'i,v'2,--- ,v'n} is an orthonormal basis for V where v\ = 
1 / 1       1    \ 1 l l 

—Vi since/(^,^) = /   —vu —Vi    = *f(vi,Vi) = a{ = —a{ = 1.    D 
GJJ \«i     ft;   /      aitf N(ai) a,i 

Thus, there is only one distinct hermitian space up to isometry for any 

given dimension n. Namely, for dimV = n, V = (1,1, • • • ,1) (n ones). 

The following proposition provides a similar, but more general result for 

A—hermitian spaces over k where * ^ 1. 

2.3.4 Proposition. Let (V, f) be an n dimensional X—hermitian space over K 

where * ^ 1. Then there exists an a e K such that V = (o, a,... ,a)(n a's). 

Proof. Again let {vi,V2,-" ivn} be an orthogonal basis of V. By Hilbert's Theo- 

rem 90, there exists a k G K such that fc(fc*)-1 = A since AA* = N(X) = 1. Thus, 

let a = k*. Then I» = a*a~l = (k*)*^*)'1 = ^(fc*)-1 = A. f(vi}Vi) = 6; ^ 0 

for i = l,...,n since * ^ 1 and V is nonsingular. Further, T(bi) = b*b~x = 

fivifViYfivijVi)-1 = A for i = 1,... ,n by definition of the A—hermitian form 
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/. Hence, a-1fej e ker(T) = Ko = N(K) for i — 1 to i = n, because the norm 

map is surjective. This implies that for 1 < i < n, there exists c, Giif such that 

JV(cj) = a-1^. Thus, fej = aN(ci) for i = 1,... ,n. Therefore, {v[,... ,v'n} where 

v[ = cJ'1Vi is the desired orthogonal basis, since /(u^,^) = f(c'^1Vi,c~1Vi) = 

(JV(ci))~
1/(^,Ui) = (iV(ci))-16i=a. Whence, VS (a,...,a) (no's).    D 

It is important to note here also that, in this context, any two dimensional 

A—hermitian space where * ^ 1 is isotropic. This is due to the fact that — 1 e 

KQ and, hence, there exists 7 € K such that iV(7) = — 1. Since the space is 

isometric to (a,a) for some o G K, there exists an orthogonal basis {fi,^2} where 

/(vi.ui) - f(v2,v2) =a. Therefore, /(^i+7^2,^1+7^2) = /(vi,vi)+7*/(«i.U2) + 

7/(^2) ^1) + 77*/(^2) ^2) = a — a = 0. As before, v\ + 7^2 ^ 0 since ^i + 7^2 = 0 

would imply a = f(vi,vi) = /(—7V2, —7^2) = 77*7(^2, ^2) = —a and if is not of 

characteristic two. 

Finally, consider the classification of symplectic spaces over K. Here, as in 

the case of hermitian spaces, only dimension is needed in order to classify spaces. 

2.3.5 Proposition. Every symplectic space is the orthogonal sum of hyperbolic 

planes and, therefore, even dimensional and up to isometry determined by its 

dimension. 

Proof. It follows from Lemma 2.2.4 and its subsequent discussion that one can 

construct a basis of hyperbolic pairs. This is known as a symplectic basis. This 

fact and the orthogonal decomposition provided by Proposition 2.1.9 shows that 

every symplectic space is the orthogonal direct sum of hyperbolic planes and, 

therefore, even dimensional. Further, it is well known that any two hyperbolic 

planes are isometric [15]. Thus, up to isometry, there is only one distinct space of 

a given even dimension.    D 
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CHAPTER 3 

THE UNITARY GROUP AND ITS GENERATORS 

Chapter 1 established some key facts about the underlying finite field K, 

while Chapter 2 highlighted properties of the A-hermitian spaces (V, /) over K. 

Chapter 3 will now introduce the concept of the unitary group. 

The chapter has two subsections. The first formalizes the notion of the 

unitary group of a A—hermitian space, while the second defines some of the gen- 

erating maps of the unitary group. Finally, the subsection concludes with some 

useful identities involving these generating maps. ' 

1. The Unitary Group. 

Let K be a finite field of odd characteristic with involution *. View K as a 

quadratic extension of its fixed field KQ. Let V be an n dimensional nonsingular 

A—hermitian space over K with A—hermitian form /. Recall from the previous 

chapter that an isomorphism (p from a A-hermitian space V to a A—hermitian space 

W which preserves the "distance" between vectors is called an isometry. The set 

of isometries from a space V onto itself form a group with respect to composition. 

3.1.1 Definition. Let (V, f) be a A—hermitianspace. The collection of isometries 

from V onto itself is called the unitary group ofV, denoted U(V). 

If V is a quadratic space (i.e. A = 1,* = 1), then the unitary group U(V) 

is called the orthogonal group 0{V). If V is a symplectic space (i.e. A = —1, 

* = 1), then U(V) is called the symplectic group Sp(V). Sometimes U(V) will 

be referred to as Un(V) when information about dimension is pertinent. At other 

times U(V) will be referred to as Uj(V) when information about the A-hermitian 

form / is important. 
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Now when the involution * on K is the identity, A must equal +1 or —1. This 

is because f(x,y)* = f{x,y) = Xf(y,x) = XXf(x,y). Thus, f{x,y) = X2f(x,y) 

for every x,y G V. Hence, A = ±1. This, of course, gives rise to a quadratic 

space with its orthogonal group in the case A = 1 and a symplectic space with its 

symplectic group when A = — 1. 

Consider, then, when the involution on K is different from the identity. 

In this case, in fact, one can assume that A = 1. For when * is not the identity, 

recall that Hilbert's Theorem 90 guarantees the existence of k G K such that 

k(k*)~1 = A since AA* = N(X) = 1. Thus, one can replace the A—hermitian / with 

the proportional form g = kf. For x,y G V, one sees that g(x,y)* — (kf(x,y))* = 

k*f{x,y)* = k*Xf(y,x) = kf(y,x) = g(y,x). Thus,g is a 1-hermitian form. 

Further, the following proposition shows that scaling the A—hermitian form 

in this way does not affect the unitary group. 

3.1.2 Proposition. Let (V,f) be a X—hermitian space and k € K. Then 

Uf(V) = Ukf(V). 

Proof. Let a € Uf(V). That means f(a(x),cr(y)) = f(x,y) V x,y e V. Thus, 

kf(a(x))ay)) = kf(x,y). Hence, a 6 Ukf(V) and Uf(V) C Ukf(V). 

Now consider a e Ukf(V). If a e Ukf{V), then kf(a(x),cr(y)) = 

kf(x,y) V x,y € V. However, multiplying both sides of the equation by the field 

element k"1 gives f(a(x),a(y)) = f(x,y) V x,y e V. Thus, a G Uf(V) and 

Ukf{V) C Uf(V). Therefore, Uf(V) = Ukf(V).    D 

2. Generators of the Unitary Group. 

Let Un(V) be the unitary group of an n—dimensional A—hermitian space 

(V,/) over a finite field K with involution * ^ 1. From Chapter 2, one observes 

that if n > 2 then the hyperbolic rank of V is at least one.  Hence, V splits as 
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V = M ± L, where HI is a hyperbolic plane with a hyperbolic pair {u,v}, namely, 

H = Ku © Kv with f{u,u) = f{v,v) = 0 and f(u,v) = 1. 

With this structure in mind, the isometries to be used in the study of U(V) 

are now defined. Let A denote the isometry such that A(ti) = v, A(v) = X*u and 

A|L = 1. For nonzero e in K define </>[e] in U(V) by (ß[e](u) = eu, (f>[e](v) — (e*)~1v 

and 0[e]|z, = 1. Recall C = {c e K \ c + Ac* = 0} from Chapter 1 and for c in C 

define a transvection T[u, c] in U(V) by 

T[u,c](z) = z + f(z,u)cu for z eV. 

For x in L the Eichler.transformation ^[it,a;] in U(V) is defined by 

E[u,x](z) = z — X f(z,u)x + f(z,x)u — A/(z,u)q(x)u 

for z e V, where q(x) = 2~lf(x,x). Similarly, define T[v,c] = AT[u,c]A_1 and 

.E[I;,:E] = AE[u,x]A~1. Finally, for a vector x in V with q{x) ^ 0, define the 

symmetry r[x] by the formula 

r[a;](.2) = z — f(z,x)q(x)~1x for ^ in V. 

The remainder of the chapter is devoted to establishing some identities 

involving the above isometries which will prove useful in Chapter 4. 

3.2.1 Lemma. T[u,c]T[u,d] = T[u,c + d]. 

Proof. For any z €V, 

T[u,c](T[u,d](z)) = z + f(z,u)du + f(z + f(z,u)du,u)cu 

= z + f(z, u)du 4- f(z, u)cu + f(u, u)f(z, u)d*cu 

= z + f(z,u)du + f(z,u)cu  (since f(u,u) = 0) 

= z-\- f(z,u)(c + d)u 

= T[u,c + d](z).    D 
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3.2.2 Lemma. aTlu,^'1 = T[a(u),c], for any a e U(V). 

Proof. For any z G V, 

(aT[u,c)o--l){z) = o(o-l(z) + f{a-\z),u)cu) 

= z + f(z,a(u))ca(u) 

= T[a(u),c](z).    0 

3.2.3 Lemma. T[au,c] = T[u,a*ca], for any a G K. 

Proof. For any z eV, 

T[au, c](z) = z + f(z, au)cau 

= z + f(z1u)a*cau 

= T[u,a*ca](z).    0 

Note here that there are corresponding lemmas to 3.2.2 and 3.2.3 involving 

T[u,c]. Their verifications proceed exactly the same way by replacing u with v. 

These corresponding lemmas will be referred to as 3.2.2' and 3.2.3' respectively. 

3.2.4 Lemma.  ^T^c^e]-1 =T[eu,c]. 

Proof. 

4>[e\T[u,c]<f>[e)-1 = T[(p[e](u),c] by Lemma 3.2.2 

= T[eu,c].    D 
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3.2.5 Lemma. 0[e]T[u,c]0[e]_1 = T[(e*)_1u,c]. 

Proof- 

4>[e}T[v,c)4>[e\-1 = T[<f>[e](v),c] by Lemma 3.2.2' 

= T[(e*r\c].    D 

3.2.6 Lemma.  0[e]A0[e]_1 = 0[e*e]A. 

Proof. Since all the maps here restrict to 1/, on L, it suffices to show that the 

maps agree on the basis vectors u and v of H. 

^[elA^e]-1 : u -» e"^ -> e"1« -• e^tfe*)-1«) = (e*«)-1« 

: v -» (e> -» (e*)(A*u) -> e*A*eu = AVeu. 

: v -» A*« -» AVeu.    D 

3.2.7 Lemma.  0[a]0[6] = 0[fe]0[a]. 

Proof. Here again all maps restrict to 1^ on L; thus, agreement on u and u need 

only be shown. 

</>[a]</>[6] : u —» 6u —• bau = a6w 

: u -* (o*)-1*> -• (fe*)-1^*)"1^ = {{ab)*)-lv 

(f)\b](j){a\ : u —> au —»• aou 

: v -» (a*)"1*; -* (a*)-1^*)-^ = {(ab)*)-1 v.    D 
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3.2.8 Lemma. E[u,x + y] = E[u,x]E[u,y] if f(x,y) = f(y,x). 

Proof. For any z eV, 

E[u,x](E[u,y](z)) =E[u,y](z)-Xf(E[u,y]{z),u)x 

+ f(E[u, y](z),x)u - Xf(E[u, y](z),u)q(x)u 

= z- Xf(z, u)y + f(z, y)u - Xf(z, u)q{y)u 

- Xf(z - Xf(z, u)y + f(z, y)u - Xf(z, u)q(y)u, u)x 

+ f{z ~ Xf(z, u)y + f(z, y)u - A/(z, u)q(y)u, x)u 

- Xf(z - Xf{z, u)y + f(z, y)u - Xf(z, u)q(y)u, u)q{x)u 

= z- Xf(z, u)y + f(z, y)u -A/(z, u)q{y)u 

-Xf(z,u)x 

+ f(z,x)u Xf(z,u)f(y,x)u 

-Xf(z,u)q(x)u 

(since f(u, u) = f(u, x) = f(x, u) = f(u, y) = f(y, u) = 0) 

= z - Xf(z, u)(x + y) + f(z, x + y)u- Xf(z,u)q{x + y)u 

(since f(y, x) = f(x,y)) 

= E[u,x + y](z).    D 
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3.2.9 Lemma. aE[u,x]c  1 = E[o~(u),c(x)], for any a € U(V). 

Proof. For any z G V, 

aE[u,x]a~1{z) = o-{a~l(z) - Xf(a-1(z),u)x + f{a~l{z),x)u 

-Xf(a-1(z),u)q(x)u 

= z- Xf(z,a(u))a(x) + f(z,a(x))a{u) 

-Xf(z,a(u))q(x)a(u) 

= E[a(u),a(x)](z).    • 

3.2.10 Lemma. E[au, x] = E[u, a*x], for any a € K. 

Proof. For any z EV, 

E[au, x] (z) = z — Xf(z, au)x + f(z, x)au — Xf(z, au)q(x)au 

= z — Xf(z, u)a*x + f(z, a*x)u — Xf(z, u)a*aq(x)u 

= z — Xf(z, u)a*x + f(z, a*x)u — Xf(z, u)q(a*x)u 

-E[u,a*x](z).   D 

Again, there are corresponding lemmas involving E[v, x] which are found 

by replacing u by v in Lemmas 3.2.9 and 3.2.10. These will be referred to as 3.2.9' 

and 3.2.10'. 

3.2.11 Lemma. <f>[e]E[u,x^e]'1 = E[u,e*x]. 

Proof. 

0[e]£[u,a;]0[e]_:1 = £[0[e](u), (p[e](x)] by Lemma 3.2.9 

= E[eu, x] since x € L 

= E[u,e*x] by Lemma 3.2.10.    D 
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3.2.12 Lemma. <£[e]£[i>,a;]0[e]-1 = E[v,e~1x]. 

Proof. 

0[e]JS[v,i]^[e]_1 = E[<f>[e]{v),<f>[e](x)] by Lemma 3.2.9' 

= E[(e*)~1v,x] since x G L 

= E[v, e~lx) by Lemma 3.2.10'.    D 
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CHAPTER 4 

TWO-ELEMENT GENERATION OF U(V) 

Now that all of the necessary frame work for the underlying finite field, 

the A—hermitian space over this field and the space's unitary group has been 

established, Chapter 4 provides a detailed discussion of the paper's main result. 

The chapter two subsections separate some preliminary information and statement 

of the main theorem from the theorem's proof. 

1. Preliminaries. 

Let K be a finite field of odd characteristic with involution *. Thus \K\ = 

q = pm for some odd prime p and natural number m. Recall from Chapter 1 that 

K is a quadratic extension field of KQ, the fixed field of *. In this context, when 

* T^ 1, * is the Fröbenius automorphism a defined by a (a) = ae for a G K where 

\KQ\ = L Let a, ß be fixed generators of the multiplicative cyclic groups K and KQ 

respectively. Moreover, let (V, /) be an n—dimensional, nonsingular A—hermitian 

space over K with its unitary group Un(V). 

Further, it is assumed that n > 2. This is due to the fact that Ui(V) is 

cyclic and, thus, has a single generating element. To see this, consider that for 

an isometry <p in Ui(V),tp must be defined for z G V by <p(z) = az where a € K 

such that N{a) — aa* = 1. In this case, f (ip(x), ip(y)) = f(ax,ay) = aa*f(x,y) = 

f(x,y.) for all x,y E V. Thus, there is a canonical isomorphism between the 

isometries of Ui(V) and the elements of norm 1 in K. Let G be the subset of 

K containing elements of norm 1. For a,b G G, (ab~1)*ab~1 = a*(fe-1)*ab_1 = 

a*a(6_1)*fe-1 = (&*fe)-1 = l-1 = 1. Hence, G is a multiplicative subgroup of the 
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multiplicative, cyclic group K and is, therefore, cyclic.   This, of course, means 

Ui(V) is cyclic as well. x 

The problem of two-generating unitary groups for n > 2 has been shown in 

part by the works of Ishibashi [12], Earnest and Ishibashi [7], and Earnest et. al. 

[2]. In [12], Ishibashi proved that if (V, /) is a nonsingular, isotropic, A-hermitian 

space over a finite field of odd characteristic with involution *, then the unitary 

group U(V) is generated by three elements. Further, in fact, he proved that when 

the unitary group is the symplectic group Sp(V) then U(V) is generated by just 

two elements. His result is worded below for further reference. 

4.1.1 Theorem.  (Ishibashi) U(V) is generated by 3 elements and U(V) = Sp(V) 

is generated by 2 elements. 

In [7] and [2], the case where the unitary group is the orthogonal group was 

considered. Here, the restrictions of isotropy and characteristic were removed. 

The following refinement of theorem 4.1.1 was achieved. 

4.1.2 Theorem.  (Earnest/Ishibashi et.al) U(V) = 0(V) is generated by two 

elements. 

In this chapter, it is Theorem 4.1.1 which is again further refined with the 

following result. 

4.1.3 Theorem. U(V) is generated by two elements. 

Although the unitary groups of Theorem 4.1.3 are still restricted to 

A—hermitian spaces over finite fields of characteristic not two, the A—hermitian 

spaces no longer need the explicit assumption of isotropy. Recall from Chapter 3 

that unitary groups of symplectic, quadratic and A—hermitian spaces where * ^ 1 

are all that is necessary to consider. Isotropy for all symplectic spaces was shown 
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in Chapter 2. Also, the two-generation problem of orthogonal groups for isotropic 

as well as anisotropic quadratic spaces was solved by Theorem 4.2.2. Finally, for 

n — 2, a A—hermitian space where * / 1 is isometric to the hyperbolic plane by 

the discussions subsequent to Propositions 2.3.4 and 2.2.4 respectively. Thus for 

dimensions greater than 2, a A—hermitian space where * =£ 1 splits as HI _L L. 

Further, Proposition 2.3.4 allows for the assumption that L has an or- 

thogonal basis such that L SS (a, a,... ,a)(n — 2 a's for some a € K If X = 

{xi, X2,..., Zn-2} is such a base for L, then one can define an isometry in U(L) 

which permutes these basis vectors since f(xi,Xi) = f(xj,Xj) — a for any choice of 

i and j. These kinds of isometries will prove to be particularly useful in generating 

the unitary group of a hermitian space. 

2. Proof of the Main Theorem. 

The proof of Theorem 4.1.3 breaks down into three parts. The first part is 

when * = 1 and A = —1 (i.e. U(V) = Sp(V)). This part is proven by Theorem 

4.1.1. Part 2 is when * = 1 and A = 1. (i.e. U(V) = 0{V)). Part 2 is proven by 

Theorem 4.1.2. The third part boils down to * ^ 1. That is, when U{V) ^ Sp(V) 

and U{V) ^ 0{V). 

It is part 3 to which the remainder of this chapter is devoted to achieving. 

The proof of part 3 breaks down into three cases based on the dimension n of V 

over K. They are n = 2, n > 2 even, and n > 3 odd. The odd dimensional case 

will be treated first because of its relative simplicity. 

4.2.1 Lemma. Let x £ L and cr e U(L). Then the subgroup generated by <p[a] 

and AE[u,x]cr contains ACT and E[v,Kx]. 

Proof. Let G = (<£[a], AE[u,x]a). 
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First, the following conjugation will be shown by induction: 

#[<*]*AE[u, xlacßla]-* = #[a*a]*AE[u, (a*)^]a. (1) 

Let i = 1. <f)[a]AE[u,x]a^{a)~l 

=0[a]A0[a]-10M^[w,a;]<?!)M"V[a]^H"1 

=(f)\a*a] AE[u, a*x]a by Lemmas 3.2.6 and 3.2.11. 

Now suppose (p^y-1 AE[u,x]a(j)[a\-i+1 = 4)[a*a}i-1AE[u, (a*)*-1a:]ff. 

Consider <f)[a}% AE\u,x]a(p[a]~\ 

(/)[a]iAE[u,x}a(j)[a]-i = (ß[a](ß{a]i-1AE[u,x}a(f)[a]-i+1^[a}-1 

= (f>[a]^)[a*aY"1 AE[u, (a*y~1x]a(f)[a]~1 (by the inductive hypothesis) 

= 0[a*a]i-VHA£[u, (a*)*'1 xfafta]-1 (by Lemma 3.2.7) 

= <t>[a*a)1 AE[u, (a*)%x)a as in the case i = 1. 

Thus, equation (1) is true for every i > 1. But, </>[o;*a] = </>[a:*a:] = <^>[o/+1] 

(f)[a]£+1. Hence, for every % > l,(f)[a]iAE[u,x]a<p[a\-i = (f)[aYe+1^AE[u,a£ix]cr. 

However, this implies AE[u, a.Elx\a G G for every i > 1. Therefore, A£[M, Ä"a:]cr C 

G. 

So, for 7 G if, (AEfu, 27x]<r)(A£'[u,7a;]o-)_1 G G, since the characteristic 

of K is not 2. But (A£[u,27:r]<7)(A.E[ii,7:r]o-)-1 

= AE[u,27x]crcr"1
JE;[u,-7a;]A~1 = AS[u, 27x]£['u, -7a;] A-1 

= AE[u,^x]A~l (by Lemma 3.2.8 since /(27z,-72:) = -2^*f{x,x) 

= /(-7x,27x)) 

= £[u,7z] by Lemma 3.2.9. Whence, .£?[«, Äx] C G. 

Moreover,£[u, Oz] = 1 G G. Thus £?[u,Äx] C G. 
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Finally, E[v, — x]AE[u,x]a G G. However, E[v,—x]AE[u,x]a = 

E[v,-x]AE[u,x]A-1Aa = E[v,-x]E[v,x}Aa = Aa.   D 

4.2.2 Proposition. Let n > 3 be odd. Then Un(V) is generated by <p[a) and 

AE[u, xi]a where a : xi —» x2 —* • • • —» xn-2 —> x\ for some orthogonal basis of 

L with f(xi,Xi) - f(xj,Xj),l <i,j <n-2. 

Proof. Let G = (<f>[a], AE[u,xi]a). By Lemma 4.2.1, Aa and E[v,Kx\] are con- 

tained in G. It suffices to show that E[u,xi] is also contained in G, since it is 

already known that Un(V) = ((f>[oi\, Aa, E\u,x\)) by [12; Proposition 3.2] in this 

case. 

Now, E[v,Kxi] C G implies that E[v,X~1xi] G G. Conjugating this ele- 

ment by ACT, one gets 

AcrE[t;,A-1xi](A(7)-1 = Ao-Elv^x^a^A-1 = AE[v,\-1x2]A-1 

= E[\*u, \~lx2] by Lemma 3.2.9 

= E[u, AA_1rE2] by Lemma 3.2.10 

= E[u, x2] G G. 

Continuing this conjugation process will yield E[u,Kxi] and E[v,Kxi] for i = 

1,2,..., n — 2. Thus, G contains E[u, x{\ which completes the proof.    D 

4.2.3 Lemma. Let x,y G L with f(x,y) = f(y,x) = 0 and a G U(L), then the 

subgroup generated by <f>[a]T[x] and AE[u,y]cr contains Aa and E[v,Ky\. 

Proof. Let G = (4>[a]T[x],AE[u,y]a). Again, consider the conjugation 

((ß(a)T[x]yAE(u,y)a(<f>(oc)T[x})~'1 which is contained in G. 

(0[a]r[x])iA£;[w,?/]<T(^[a]r[a;])-i = ^[ajV^AEfu, y)aT\x)-i(j)[a)-\ 

since <j)[a] G U(M) and r[re] G U(L) and, thus, ^»[ajrfa:] = r[o;]^[a]. Therefore, 
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r[x]%(j)[a]l/SE[u,y\a(f)[oi]  %r[x]  i is obtained by the conjugation. But this is equal 

to r[x]l<f)[a\^+1}%l\E\u,ahy)oT[x]~% as previously shown in Lemma 4.2.1. 

Thus, if i is even, one has 0[o;]^+1^AE(u, ay)a where a G K2 since ii is 

even. However, this is (^[a]r[a;])^+1^ AE[u, ay]a since (£+l)i is even. This implies 

that AE[u, ay]a G G. Since this can be done for any even integer, AE[u, K2y]a C 

G. 

Now, if % is odd, then r^^a^^AE^a^y^rlx]^ = T[x]<f>[a}^+1^A 

jB[u,o;^y](rr[a;].  Further, since I is odd, r[:c]</>[a]^+1)lAI2[u, a^2/]crr[:r] 

= ((j)[a}T[x]Ye+1^T[x}AE[u,a£iy]aT[x].   This implies that T[O;]AE[u,by\ar[x] is 

contained in G where 6 G K\K2. 

Let 7 G Ä"2. If 7 G if2, then 27 G if2 since if has odd characteristic and 

2 e k0 C K2 (Lemma 1.2.8). So (AE[u,2^y]a)(AE[u,jy]a)-1 = £[«,73/] is 

contained in G as shown in Lemma 4.2.1. 

Let 7 G X\K2. If 7 G k\K2, then 27 G ir\^2 as above. 

So (r[o;]A£;[w,27y]c7r[a;])(T[x]AJB[w,7y](Tr[a:])~1 

= r[a;]A£;[w,7y](TA~1r[a;]  by Lemma 3.2.8 

= T[X]E[V, ^yy]r[x] by Lemma 3.2.9 

= E[v, yy] G G since /(a;, y) = f(y, x) = 0. 

Therefore, E[v,Ky] is again a subset of G. 

Finally, £![v, -y]AE[u, y]a G G since 1 G if2 and E[v, -y]AE(u, y)a = ACT 

as in Lemma 4.2.1 which ends the proof.    D 
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4.2.4 Proposition. Let n > 2 be even. Assume that —A = a2k+1 for some 

natural number k or k = 0. Then Un(V) is generated by <f>[a]r[xi — £n-2] &nd 

AE[u, X2}cr where a : x\ —* X2 • • • —* £n-2 —• x\- 

Proof. Let G = (<p[a]r[xi — xn_2], AE[u, a^]0")- By Lemma 4.2.3, G contains ACT 

and E[v,Kx2}. It only remains to show that G contains E[u,x\], since Un(V) == 

(^[a]r[xi — xn-2], ACT, E\U,X\)) as proven in [12; Proposition 3.3]. 

Employing the strategy of conjugation by ACT, one sees 

(Aa)E[v,Kx2](Aa)-1 = AaE[v,Kx2\o-1A-1 = AE[v,Kx3]A-1 

= E[\*u, Kx3] = E[u, XKx3]. Again, the last two equalities come by way of Lem- 

mas 3.2.9 and 3.2.10 as in Proposition 4.2.2. Moreover, E[u, XKx3) = E[u,Kx3] 

since A G K. 

By repeating the conjugation and using the fact that n — 2 is even since n is 

even, it follows that G contains E[v, Kxi\ where i — 2,4, • • • , n — 2 and E[u, KXJ] 

where j = 1,3, ...,n — 3. Thus, E[u, Kxi] is contained in G. So, E[u,xi] is an 

element of G. 

Note that Lemma 4.2.3 cannot be applied directly when n = 4, for then 

n — 2 = 2 and f(x\ — X2, a^) ^ 0. However, it can be seen from the proof of that 

lemma that E[v,jX2] G G for all 7 G K2. In particular, E[v,X2] € G, and so 

E[v,x2}-1 =E[v,-x2] G G. Then E[v,-x2]AE[u,X2}o- = AE[u, -x2\E[u,x2]o'•=' 

ACT G G. Finally, (Acr^ß^a^KAcr) = Efu.Zi] G G by Lemma 3.2.9.    D 

4.2.5 Proposition. Let n > 2 be even. Assume that —A = o?k for some natural 

number k or k = 0. Then Un(V) is generated by c/>[a]r[:ri — 0^-2] &nd AE[u, a^jc 

where a : x\ —» X2 —* • • • —* £n-3 —* ^l- 

Proof. Again, let (2 = (t/>[a]r[a;i — xn-2], AE[u, X2]o-). The proof proceeds exactly 

the same as that in Proposition 4.2.4. Note here, however, that when conjugating 
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by ACT, one gets E[v,Kxi\ where i = 2,4, ...,n — 4 and E[U,KXJ] where j — 

3, ...,n — 3 contained in G. When E[u,Kxn-s\ is conjugated by ACT, it follows 

that E[v,Kxi] is contained in G. Repeating the conjugation on this second pass 

puts E[v,Kxm] where m = 1,3,- •• ,n — 3 and E[u,Kxr] where r = 2,4, ...,n - 4 

in G. Thus, conjugating J5[ü, if:r;n_3] by ACT on this second pass places the desired 

E[u,Kx!\ in<3. 

As in the proof of Proposition 4.2.4, the case n = 4 needs to be treated 

separately. Note that in this case a = If,. AS before, it has been shown that 

E[v,X2] £ G. This implies that E[v,-X2] G G and E[v,~X2]AE[u,X2] = 

AE[u, — X2]E[u,X2] = A e G. As r\x\ — X2] = r[x2 — x\), it follows from Propo- 

sition 3.4 of [12] that Un(V) = {^[ajrfa;! — X2], A,E[u,X2\). So it remains only to 

show that E[u,X2] € G. But E[u, X2} = A~1E[v,X2]A e G, since E[v,X2] G G and 

A eG.    D 

Finally, in the two dimensional case, it suffices to only look at the generators 

of {7(H). Recall from the previous two chapters that if dimV = 2, V = H. In this 

case, the following result is obtained. 

4.2.6 Proposition. IfC = {0}, then U(M) = (A,<f>[a\)) otherwise [7(H) = (<f>[a\, 

AT[u, c]) where c is any nonzero element of C. 

Proof. In [10; Lemma 2.3], Ishibashi showed that if C = {0}, then U(U) = 

(A,<f>[<x]) and if C ^ {0}, then 17(E) = (A,<f>[a],T[u,c\) where c G C. It will 

be shown that in this latter case ?7(H) = (</>[«], AT[u, c]). 

So let C contain c ^ 0. As shown in Chapter 1, C = {c/?1 | « = 1,2, ...,^ — 1} 

where ß is a fixed generator of KQ. Thus, T[u, C] = {T[w, ^ÖV]}. However, consider 
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the conjugation of AT[u,c] by <f>\ß\. 

0[/?] A2>, c]4>[ß]~l = 0[/5] A0[/?]-V[/5]T[u, CM/?]"1 

= <ß[ß*ß] AT[ßu, c] by Lemmas 3.2.6 and 3.2.4 

= (ß[ß2]AT[u,ß2c\ by Lemma 3.2.3 and since ß 6 K0. 

Suppose <f>\ß]i-1AT[u,c]<fi[ß\-i+1 = (f>[ß2^-^)AT[u,ß^-^c]. 

Consider (j)[ßYAT[u, c]<j>\ß)-\ 

0[/5]iAT[U,c]<^[/?]-i = mm-^nuAm-^m-1 

= tlßWßW-VjATfoßW-VcWß]-1 (by the inductive supposition) 

= tlßW-VtyfflATfaßW-VcWlßl-1 (by Lemma 3.2.7) 

= (ß[ß^i~^](f>\ß2}AT[u,ß2ß^i-1)c] (as above) 

= 4>[ß2i]AT[u,ß2ic) 

.= 0[/?]2iATK/?2ic]. 

Hence, <f> [ß] * AT [u,c]<j> [/?]"' = <p[ß]2iAT[u,ß2ic] for every integer i > 1 by 

induction. 

This implies that for any i > 1, AT[u, /?2V] is an element of (0[/3], AT[u, c]). 

Further, let r and s be arbitrary even intgers, then (4>[ß], AT[u, c]} contains 

(AT[u,/0
sc])-1(AT[u,/?rc]) = T(u, -ßsc)A-1AT{u,ßrc) = T{u,(ßr - ßs)c). 

Thus, T(u,SKoc) C (<f>[ß],AT[u,c]). 

If £Ko = #o, then 2>,K0c] = T(u,C) C (0[/3], AT[u,c]) by Lemma 

1.2.10. Specifically, T[u,c] G (<£[/?], A2>,c]). This, of course, implies that A e 

(4>(ß), AT(u, c)). Moreover, since ß is contained in the multaplicative cyclic group, 
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K, generated by a, it follows that {A,T[u, c]} C (0[a], AT[«, c]). This provides 

the result. 

If £#-0\{±l}, then for \KQ\ > 3, there exists 8 £ KQ such that <5 ^ ±1. Thus, 

r[«, <5c] and T[u, (1 - tf)c] are elements of T[u,£Koc]. Then T[u, 6c]T[u, (1 - 6)c] = 

T[u, c] € (<f)\ß], AT[u, c]} by Lemma 3.2.1. Hence, the argument proceeds as before 

and 17(H) = {<f>[a],AT[u,c]). 

Therefore, consider the case when \Ko\ = 3. Then KQ = {—1,0,1} and 

for ease of discussion, take KQ = {—1,0,1}. Suppose, then, that K is a two 

dimensional extension of {—1,0,1}. Here, K is a field with 9 elements. In this 

case also, ß = —1. Now, N(a) = aa* = ±1, since the norm map is surjective. But 

N{a) = 1 implies that N(x) = 1 for all xeK. Thus, N(a) = -l = ß. 

Consider the following conjugation. 

(j)[a}AT[u,c}<j)[a)-1 = ^[a]A^[a]_10[a]T[w,c]0[a]-r 

= <f)[aa*]AT[u, [aa*]c] 

= <ß(ß)AT(u,ßc). 

But this implies that AT[u,ßc] = A^T[u,—c] is contained in (^[a],AT[«,c]) as 

before. That means (AT[u,c])-1(Ar['u,-c]) =T[u,-c]A~1AT[u,-c] 

= T[u, — c]T[u, — c] = T[u,c] is an element of {<p[a], AT[u, c]). Again, this puts 

A in (4>[a],AT[u,c]) and U(B) = (4>[a],AT[u,c\). This completes the proof of 

Proposition 4.2.6.    D 

Theorem 4.1.3 is now clear by Theorems 4.1.1 and 4.1.2 and Propositions 

4.2.2, 4.2.4, 4.2.5, and 4.2.6. 
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